Isotrivially fibred isles in the moduli space of surfaces of general type

نویسنده

  • Martin Möller
چکیده

We complement Catanese’ s results on isotrivially fibred surfaces by completely describing the components containing an isotrivial surface with monodromy group Z/2Z. We also give an example for deformation equivalent isotrivial surfaces with different monodromy group. Mathematics Subject Classification 2000. 14J10, 14D06

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 3 Maximally irregularly fibred surfaces of general type

We generalise a method of Xiao Gang to construct ’prototypes’ of fibred surfaces with maximal irregularity without being a product. This enables us, in the case of fibre genus g = 3 to describe the possible singular fibres and to calculate the invariants of these surfaces. We also prove structure theorems on the moduli space for fibred surfaces with fibre genus g = 2 and g = 3. Mathematics Subj...

متن کامل

Maximally irregularly fibred surfaces of general type

We generalise a method of Xiao Gang to construct ’prototypes’ of fibred surfaces with maximal irregularity without being a product. This enables us, in the case of fibre genus g = 3 to describe the possible singular fibres and to calculate the invariants of these surfaces. We also prove structure theorems on the moduli space for fibred surfaces with fibre genus g = 2 and g = 3. Mathematics Subj...

متن کامل

ct 2 00 4 Maximally irregularly fibred surfaces of general type

We generalise a method of Xiao Gang to construct ’prototypes’ of fibred surfaces with maximal irregularity without being a product. This enables us, in the case of fibre genus g = 3 to describe the possible singular fibres and to calculate the invariants of these surfaces. We also prove structure theorems on the moduli space for fibred surfaces with fibre genus g = 2 and g = 3. Mathematics Subj...

متن کامل

20 05 Shimura - and Teichmüller Curves

We classify curves in the moduli space of curves that are both Shimura-and Teichmüller curves: Except for the moduli space of genus one curves there is only a single such curve. We start with a Hodge-theoretic description of Shimura curves and Teichmüller curves that reveals similarities and differences of the two classes of curves. The proof of the classification relies on the geometry of squa...

متن کامل

Coordinate finite type invariant surfaces in Sol spaces

In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002